\(\int \cos (c+d x) (a+b \cos (c+d x))^{3/2} \, dx\) [495]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 199 \[ \int \cos (c+d x) (a+b \cos (c+d x))^{3/2} \, dx=\frac {2 \left (a^2+3 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{5 b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {2 a \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{5 b d \sqrt {a+b \cos (c+d x)}}+\frac {2 a \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 d}+\frac {2 (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{5 d} \]

[Out]

2/5*(a+b*cos(d*x+c))^(3/2)*sin(d*x+c)/d+2/5*a*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/d+2/5*(a^2+3*b^2)*(cos(1/2*d*x
+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*(a+b*cos(d*x+c))^(1/
2)/b/d/((a+b*cos(d*x+c))/(a+b))^(1/2)-2/5*a*(a^2-b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Elliptic
F(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*((a+b*cos(d*x+c))/(a+b))^(1/2)/b/d/(a+b*cos(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.29 (sec) , antiderivative size = 199, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {2832, 2831, 2742, 2740, 2734, 2732} \[ \int \cos (c+d x) (a+b \cos (c+d x))^{3/2} \, dx=-\frac {2 a \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{5 b d \sqrt {a+b \cos (c+d x)}}+\frac {2 \left (a^2+3 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{5 b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {2 \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{5 d}+\frac {2 a \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 d} \]

[In]

Int[Cos[c + d*x]*(a + b*Cos[c + d*x])^(3/2),x]

[Out]

(2*(a^2 + 3*b^2)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(5*b*d*Sqrt[(a + b*Cos[c + d*
x])/(a + b)]) - (2*a*(a^2 - b^2)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(5*
b*d*Sqrt[a + b*Cos[c + d*x]]) + (2*a*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(5*d) + (2*(a + b*Cos[c + d*x])^(3
/2)*Sin[c + d*x])/(5*d)

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2831

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 2832

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-d
)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(f*(m + 1))), x] + Dist[1/(m + 1), Int[(a + b*Sin[e + f*x])^(m - 1)*Sim
p[b*d*m + a*c*(m + 1) + (a*d*m + b*c*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[
b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] && IntegerQ[2*m]

Rubi steps \begin{align*} \text {integral}& = \frac {2 (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{5 d}+\frac {2}{5} \int \left (\frac {3 b}{2}+\frac {3}{2} a \cos (c+d x)\right ) \sqrt {a+b \cos (c+d x)} \, dx \\ & = \frac {2 a \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 d}+\frac {2 (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{5 d}+\frac {4}{15} \int \frac {3 a b+\frac {3}{4} \left (a^2+3 b^2\right ) \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx \\ & = \frac {2 a \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 d}+\frac {2 (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{5 d}-\frac {\left (a \left (a^2-b^2\right )\right ) \int \frac {1}{\sqrt {a+b \cos (c+d x)}} \, dx}{5 b}+\frac {\left (a^2+3 b^2\right ) \int \sqrt {a+b \cos (c+d x)} \, dx}{5 b} \\ & = \frac {2 a \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 d}+\frac {2 (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{5 d}+\frac {\left (\left (a^2+3 b^2\right ) \sqrt {a+b \cos (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}} \, dx}{5 b \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {\left (a \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{5 b \sqrt {a+b \cos (c+d x)}} \\ & = \frac {2 \left (a^2+3 b^2\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{5 b d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {2 a \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{5 b d \sqrt {a+b \cos (c+d x)}}+\frac {2 a \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 d}+\frac {2 (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{5 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.61 (sec) , antiderivative size = 174, normalized size of antiderivative = 0.87 \[ \int \cos (c+d x) (a+b \cos (c+d x))^{3/2} \, dx=\frac {2 \left (a^3+a^2 b+3 a b^2+3 b^3\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )-2 a \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )+b \left (4 a^2+b^2+6 a b \cos (c+d x)+b^2 \cos (2 (c+d x))\right ) \sin (c+d x)}{5 b d \sqrt {a+b \cos (c+d x)}} \]

[In]

Integrate[Cos[c + d*x]*(a + b*Cos[c + d*x])^(3/2),x]

[Out]

(2*(a^3 + a^2*b + 3*a*b^2 + 3*b^3)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticE[(c + d*x)/2, (2*b)/(a + b)] -
2*a*(a^2 - b^2)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)] + b*(4*a^2 + b^2 + 6*
a*b*Cos[c + d*x] + b^2*Cos[2*(c + d*x)])*Sin[c + d*x])/(5*b*d*Sqrt[a + b*Cos[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(662\) vs. \(2(237)=474\).

Time = 6.56 (sec) , antiderivative size = 663, normalized size of antiderivative = 3.33

method result size
default \(-\frac {2 \sqrt {\left (2 b \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a -b \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (8 \left (\cos ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{3}+12 \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a \,b^{2}-16 \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{3}+4 \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a^{2} b -18 \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a \,b^{2}+10 \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{3}-a^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a -b}{a -b}}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )+a \,b^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a -b}{a -b}}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a -b}{a -b}}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a^{3}-\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a -b}{a -b}}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a^{2} b +3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a -b}{a -b}}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) a \,b^{2}-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {\frac {2 b \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a -b}{a -b}}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {-\frac {2 b}{a -b}}\right ) b^{3}-4 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) a^{2} b +6 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) a \,b^{2}-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) b^{3}\right )}{5 b \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +\left (a +b \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a +b}\, d}\) \(663\)

[In]

int(cos(d*x+c)*(a+cos(d*x+c)*b)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-2/5*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(8*cos(1/2*d*x+1/2*c)^7*b^3+12*cos(1/2*d*x+1/
2*c)^5*a*b^2-16*cos(1/2*d*x+1/2*c)^5*b^3+4*cos(1/2*d*x+1/2*c)^3*a^2*b-18*cos(1/2*d*x+1/2*c)^3*a*b^2+10*cos(1/2
*d*x+1/2*c)^3*b^3-a^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)*EllipticF(cos(
1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+a*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(
1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+
a-b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^3-(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(
1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2*b+3*(sin(1/2*d*x+1/2*c
)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b^2
-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*
b/(a-b))^(1/2))*b^3-4*cos(1/2*d*x+1/2*c)*a^2*b+6*cos(1/2*d*x+1/2*c)*a*b^2-2*cos(1/2*d*x+1/2*c)*b^3)/b/(-2*sin(
1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(-2*b*sin(1/2*d*x+1/2*c)^2+a+b)^(1/2)/
d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.13 (sec) , antiderivative size = 438, normalized size of antiderivative = 2.20 \[ \int \cos (c+d x) (a+b \cos (c+d x))^{3/2} \, dx=-\frac {2 \, \sqrt {2} {\left (-i \, a^{3} + 3 i \, a b^{2}\right )} \sqrt {b} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right ) + 2 \, \sqrt {2} {\left (i \, a^{3} - 3 i \, a b^{2}\right )} \sqrt {b} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right ) + 3 \, \sqrt {2} {\left (-i \, a^{2} b - 3 i \, b^{3}\right )} \sqrt {b} {\rm weierstrassZeta}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right )\right ) + 3 \, \sqrt {2} {\left (i \, a^{2} b + 3 i \, b^{3}\right )} \sqrt {b} {\rm weierstrassZeta}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right )\right ) - 6 \, {\left (b^{3} \cos \left (d x + c\right ) + 2 \, a b^{2}\right )} \sqrt {b \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{15 \, b^{2} d} \]

[In]

integrate(cos(d*x+c)*(a+b*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/15*(2*sqrt(2)*(-I*a^3 + 3*I*a*b^2)*sqrt(b)*weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*
b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 2*a)/b) + 2*sqrt(2)*(I*a^3 - 3*I*a*b^2)*sqrt(b)*weierst
rassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) - 3*I*b*sin(d*x + c)
+ 2*a)/b) + 3*sqrt(2)*(-I*a^2*b - 3*I*b^3)*sqrt(b)*weierstrassZeta(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a
*b^2)/b^3, weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3
*I*b*sin(d*x + c) + 2*a)/b)) + 3*sqrt(2)*(I*a^2*b + 3*I*b^3)*sqrt(b)*weierstrassZeta(4/3*(4*a^2 - 3*b^2)/b^2,
-8/27*(8*a^3 - 9*a*b^2)/b^3, weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*
b*cos(d*x + c) - 3*I*b*sin(d*x + c) + 2*a)/b)) - 6*(b^3*cos(d*x + c) + 2*a*b^2)*sqrt(b*cos(d*x + c) + a)*sin(d
*x + c))/(b^2*d)

Sympy [F]

\[ \int \cos (c+d x) (a+b \cos (c+d x))^{3/2} \, dx=\int \left (a + b \cos {\left (c + d x \right )}\right )^{\frac {3}{2}} \cos {\left (c + d x \right )}\, dx \]

[In]

integrate(cos(d*x+c)*(a+b*cos(d*x+c))**(3/2),x)

[Out]

Integral((a + b*cos(c + d*x))**(3/2)*cos(c + d*x), x)

Maxima [F]

\[ \int \cos (c+d x) (a+b \cos (c+d x))^{3/2} \, dx=\int { {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cos \left (d x + c\right ) \,d x } \]

[In]

integrate(cos(d*x+c)*(a+b*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((b*cos(d*x + c) + a)^(3/2)*cos(d*x + c), x)

Giac [F]

\[ \int \cos (c+d x) (a+b \cos (c+d x))^{3/2} \, dx=\int { {\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cos \left (d x + c\right ) \,d x } \]

[In]

integrate(cos(d*x+c)*(a+b*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((b*cos(d*x + c) + a)^(3/2)*cos(d*x + c), x)

Mupad [F(-1)]

Timed out. \[ \int \cos (c+d x) (a+b \cos (c+d x))^{3/2} \, dx=\int \cos \left (c+d\,x\right )\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2} \,d x \]

[In]

int(cos(c + d*x)*(a + b*cos(c + d*x))^(3/2),x)

[Out]

int(cos(c + d*x)*(a + b*cos(c + d*x))^(3/2), x)